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1 INTRODUCTION

Throughout the historical development of structural analysis methods
there has been a parallel, if spasmodic, interest in the techniques of struc-
tural optimisation. Until the advent of the present century this interest
centred mainly on achieving uniformly stressed structures equivalent, under
certain conditions, to finding a minimum weight design subject to stress con-
straints. One impetus for generalising the scope of these early methods
occurred where emphasis was placed on the design of minimum weight aircraft
structures. However, a comprehensive attack on the problem had to await
both the introduction of the digital computer and the development of the finite

element method,

Initial research into computerised methods centred on the structural
application of optimisation techniques from the parallel field of mathematical
programmingl. Whilst this approach is appropriate for problems with few
structural elements it is unsuitable for large scale problems of the type
encountered in aircraft design. The reason lies in the generality of mathe-
matical programming methods which makes them computationally expensive for
complex structures with many design variables or constraints. However, these
methods have the advantage that under certain conditions they can be guaran-

teed to converge to a local optimum,

The computational inefficiency of mathematical programming methods
encouraged the development of new techniques which exploit the inherent proper-
ties of the structures problem, The essence of these new techniques is to
employ algorithms based on the relatively simple mathematical form for struc-
tural optimality criteria2’3. These 'optimality-criteria' methods have proved
particularly efficient in creating optimum designs where stiffness is critical;

a situation appropriate to the design of aeronautical structures. Unfortunately,
though computationally efficient, optimality-criteria methods suffer the disad-
vantage of lacking adequate convergence proofs. Indeed, examples can be found

where such techniques have converged to non-optimal solutions.

An alternative approach is to utilise special mathematical programming
methods which possess a high degree of internal mathematical structure and
have potential for rapid convergence to an optimum. Such methods must also
be capable of accommodating the structural optimisation problem without sacri-

ficing the special properties which provide the initial attraction, It is
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from within this framework that geometric programming became recognised as one
of the candidate structural optimisation methods. The standard form for the
method can be applied directly to certain structural optimisation problems but
modifications are required for more general structural applications, This pro-
cess of adaptation has resulted in a technique which blends together the mathe-

matical programming and the optimality-criterion methods,

The primary purpose of the present paper is, therefore, twofold: to review
in section 2 the development of geometric programming as a structural optimisa-
tion technique, and subsequently to illustrate that this technique is equivalent
to a transformed optimality-criterion method. The theory demonstrating this
correspondence is established in section 3. The following section demonstrates
that a suitable solution procedure for the most recent form of geometric program-
ming is provided by a Newton based method with constraints treated by a projec-
ted gradient philosophy. Attention is focussed on the strong linear properties
of the geometric programming method and on the availabi}ity, under certain condi-
tions, of the Hessian matrix. A few simple examples are used to illustrate the

main points of the arguments.,

2 REVIEW OF GEOMETRIC PROGRAMMING

The attraction of geometric programming lies in its ability to reduce the
complexity of an original or primal optimisation problem by creating a concave
dual function subject to linear constraints4. Clearly, if the primal requires
minimising the associated dual is a maximisation problem. The concavity of the
dual is independent of any convexity or lack of it in the primal; similarly the
dual constraints remain linear no matter how non-linear the corresponding primal
problem. A further advantage occurs in certain special circumstances whereby
the dual space is reduced to a single point which is the maximising point. In

this case a solution to the primal problem requires a single matrix inversion.

Turning, now, to a mathematical description of the method; the primal
geometric programming problem is concerned with finding a vector

x* = (X?,X;,...,x:)t which solves the problem
n n

a. .
minimise go(x) = j{: c; I l leJ ,

i=1 =1

subject to the constraints
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1 > gk(x) = c. X, k=1,..m
1=p(k_1)+1 j=1

giving rise to an optimisation problem with n variables and m constraints.
The following conventions and assumptions apply: X, 20 ({1=1,.,.n), P(O) = n,
P(k) - P(k—l) is the number of terms in the kth conmstraint, and e =0

G = l...P(m)). Exponential terms denoted by aij are real numbers which may be
positive, negative or zero. From this description of the primal optimisation
problem we see that the standard method can treat only structural optimisation

problems which lie entirely within the positive orthant,

As we have indicated the advantage of the method is related to the attrac-
tive properties of the associated dual formulation, which is the preferred medium
for seeking a solution to the above primal problem. This dual formulation is
conceived in terms of the dual problem of geometric programming which is defined

by requiring a vector &* to maximise the product

P(m) 6i m
Ci Xk(S)
vV(s) = T H xk(s)
i=1 1 k=1
P )
where Ak(G) = Gi k=1,..m
1=P(k_1)+1

subject to the linear constraints

Gi > 0 1=1000P(m)
8
Yo -
1
i=1
and
P m)
1561 = 0 j=1l...n
i=1



with the convention that yy = y_y =1 for y = 0 . Having remarked earlier on
the concavity of the dual function it must be emphasised that this relates to
the logarithm of the above dual function, i.e. 1n [V(8)] . This concavity, and
the linearity of the constraints, gives rise to a problem which is particularly
well suited to the most rapid projected-gradient solution techniques. Also,

it is perfectly feasible to solve the primal problem by seeking a solution to
the dual since the contrained minimum for go(x) has the same numerical value

as the constrained maximum for V(§) .

The primary limitation of standard geometric programming is the require-
ment that the entire primal problem be expressed in terms of polynomials with
positive coefficients., A requirement which clearly limits the scope of the
method in dealing with structural optimisation problems. Nevertheless, Moss and
Boddy6 have demonstrated that the standard geometric programming problem is
entirely adequate for the design of certain aeronautical components. 1In
particular, they show how the minimum weight design of integral stiffened flat
panels under uniform end load (Fig.l!) can be found from this technique, The
design constraints for the problem being a minimum gauge requirement, a maximum
stress limit and a variety of buckling constraints. The authors indicate, not
only the facility for geometric programming to solve the problem, but also the

property it has of illuminating the influence on the optimum of various design

modifications.

Morris7 has shown how standard geometric programming can be used to gener-
ate minimum weight designs for statically determinate pin-jointed frameworks
under multiple loads and subject to stress, displacement and gauge constraints.
The design variables in this case are not the usual cross-sectional areas but
reciprocal areas and in this case a transformation exists whereby negative
coefficients can be accommodated by the standard method. An important aspect of
this paper is the establishment of a correspondence between geometric programming

and the optimality-criterion method of Prager and Chern®,

Whilst these limited applications of standard geometric programming are
useful, more general problems require a variation known as complementary
geometric programming. The basis of this new method is an approximation scheme
which replaces any arbitrary function by a single term polynomial with a positive
coefficient, Thus, for a feasible point ¥ a function g(®) is approximated by

the term g(x,%X) where

335



n
X.
g(x, = g® W -
X
i=1 1

with
X o
a., = |-—+~2%8. i=1l...n

1 g axi

X.=X

The essence of complementary geometric programming is to generate a sequence of
standard geometric programming problems by consecutively applying the above

scheme., The resulting sequence of solutions converges to a local minimum of the
optimisation problem providing each approximation forms a conservative estimate

to the originalg’lo.

An enhanced range of problems can be solved using complementary geometric
programming and one of the earliest considered is the design of a ship bulkhead.
This problem, originally treated by Moell, is concerned with the minimum weight
design of the corrugated bulkhead shown in Fig.2, subject to constraints derived
from a set of ship design codes. The solution by complementary geometric pro-
gramming is particularly straightforward and rapidlz. A limited range of
statically indeterminate pin-jointed structures can be solved by the method;
though the procedure is somewhat clumsyl3. The major difficulty in this later
application is satisfying the subsidiary rules which ensure that the approximation
procedure generates a conservative sub-problem., Nevertheless, this attempt led

to a fruitful conjunction of Newton algorithms with the basic geometric program-

ming concept.

An alternative suggestion14 is to employ the sequential geometric program—
ming method without the requirement that each sub-problem forms a conservative
estimate to the original. Indeed, the method goes further and applies the
approximation scheme to qll constraints which are thereby reduced to single term
polynomials. This new technique we call, for convenience, reduced geometric
programming, The move is incisive and permits the application of geometric pro-
gramming to large scale structures, typified in Fig.3, where minimum weight

designs are sought, subject to stress, displacement and gauge constraints.

Reduced geometric programming does not conform to the convergence theorems

applicable to complementary geometric programmingg; but despite this lack of
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rigour exhibits rapid convergence. In fact, for the examples shown in Fig.3,
the rate of convergence is equivalent to that of optimality-criterion methods
and, as is shown in later sections, there is potential for improving this
performance, In the light of these remarks it is clearly important that the
method be placed on a firmer basis and in order to complete the review we attempt
to satisfy this requirement in the next section. We show that the new technique
is primarily a logarithmic form of the optimality-criterion method. However,
unlike the standard optimality-criterion methods, geometric programming retains
the objective function as part of the final formulation. The lack of explicit
reference to an objective function in optimality-criterion methods of the type,
similar to fully-stressed design algorithms, can lead to the convergence on
non-optimal solutions, Retention of this term by the reduced geometric program—

ming approach implies that this particular form of ill-behaviour is suppressed.

3 REDUCED GEOMETRIC PROGRAMMING

Anticipating, somewhat, the later results we consider the minimum weight
design of a pin-jointed framework subject to displacement constraints, which

is traditionally used to develop the optimality-criterion equations. The prob-

lem is one of finding a vector x* = (x’;‘,x’;,...,x:)L which:

minimises the weight of a pin-jointed structure,

n
S.%.s8..
ﬁ- >u- = "}"_1—_]'.1' . j = looom
] J EXi
i=1]

This structure consists of n bars and the terms Si’ ;s X, are respectively
the tension, length and cross-sectional area of the ith bar. The tension in
the ith bar by the application of a unit load at the constrained jth node is
denoted by sij and Young's modulus by the constant E . It is assumed that

the framework is subject to a set of externally applied single or multiple loads.

Assuming a feasible point X and applying the approximation scheme of the

previous section to the constraint equations provides the expressions:
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4. 2 u, = ‘—I-—J-—Ji e u‘:_l_ -.2' eee ",Cr-l' j = ],,.m
J J Ex, Nx X X
~ i=1 . ! 2 n
with
oiVicﬁj) i=1l...n
1] Eu j=1...m

where oy is the stress in bar i due to the application of the applied loads,
ogJ) is the stress in the bar due to a unit load applied at node j and v, is
the element volume. Using these approximate constraint inequalities the

associated dual geometric programming problem becomes; find a vector (§,)) which:

5. A

n i m
pzi uj
maximises V() = l l <?;—> | ‘ ~ " .
i * 1 3 i

i=]
and the orthogonality conditions
& oo
6.—Z>\.—-—-—-—=o i=1..n
1 | u.E
3=l ’

where the vectors §, A are termed dual variables.

A clearer insight into the mathematicai structure of the dual problem can
be obtained by noting that suitable values for the dual variables Gi’ i=1...n

satisfying the normality condition are given by

zlxi zixl
6i = n - vol 1= liiﬁn
:E: L.X.
171
i=1]
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where 'vol' is the volume of the entire structure. Thus, the dual problem

becomes:

maximise V(8)

subject to

b
>
Lo
Q
elr
Q
=
i
(=}
-

L
vol

which is the final form for the reduced geometric programming formulation as

applied to the structural optimisation problem.

This establishes a particular form for the geometric programming equations
and we now turn to the equations of the optimality-criterion method. The itera-
tion formulae for the optimality-criterion method are constructed by satisfying
the differential forms of the associated Lagrangian function. Normally the
Lagrangian employed is associated with the displacement constrained problem
given above but this cannot be used if a correspondence with geometric program—
ming is sought. 1In order to satisfy this requirement we turn to a logarithmic
version of the structural optimisation problem which has the same solution vector

as the original, sic:

n
minimise 1n Z L.X%. .
i“i
i=1
o Sills1
subject to in (ﬁj) 2 1n (uj) = 1n Z ——-E;-—J- .
i=1

The associated Lagrangian is written,

n m
L(x,u) = 1n Z pLox.| + Z uj{ln (uj) - 1n (ﬁj)} ’
i=1

m
3L _ 2’1 Z"‘au__
_— = + = 0
9x n u X.
i £ 3j i
L.x i=1
171
1=]
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or

By setting uj = Aj’ j=1l...m we recover the constraint equations of reduced
geometric programming. Thus, collapsing the structural optimisation problem to
conform with the dual form of reduced geometric programming is equivalent to a
special form of the optimality-criterion method. The correspondence is only
strict at the optimum solution to the dual geometric programming problem. This
restriction is not serious since the standard solution procedure normally

requires locating the dual optimising point to the geometric programming problem.

The two techniques are similar in their method of operation and require a
structural analysis to set up the basic optimality equations. Geometric program-
ming uses this information to set up asub~problemwhich is optimised and, there-
fore, accomplishes a number of iterations before requiring a further analysis
step. Optimaiity—criterion methods by contrast perform no sub-optimisation and
require an analysis at each iteration step. A further difference arises when the
updating formula used to generate estimates for the optimum areas are considered.
For the optimality-criterion method recourse is f}equently made to heuristic
arguments in order to generate suitable expressions for general problems. This
expediency is not required in the case of geometric programming where a variety
of linear or quadratic programming methods are available for the solution of the

appropriate sub-problem.

4 SOLUTION PROCEDURE

A variety of techniques have been suggested for optimising the standard
geometric programming problem which forms the kernel of the sub-problems in the
reduced methodls_la. Some of these techniques rely upon the strong linear nature
of the dual formulation and employ modified simplex algorithms, others incor-
porate the nonlinear component of the objective function directly and use a

standard nonlinear solution procedure.

In the case of reduced geometric programming the mathematical structure of
the dual problem has a strong influence on the selection of a particular technique.
The form of the problem implies that a limited number of the dual variables are
independent and, indeed, the number of free variables is equal to the number of

constraints less one, For the displacement constrained problem given in the
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previous section there are m constraints implying the existence of m ~ 1
variables r, (say) i = 1...m - 1 , Furthermore, an (m) x (n + m) transformation
matrix {b} exists such that a set of dual variables can be constructed which
satisfy identically the normality and orthogonality conditions. The constraints

on the dual then reduce to a simple requirement that

o} {1} > o

where {%} = {l,rl,rz,...,r _l}t « In addition further arguments based upon the
nature of the dual problem may greatly reduce the number of these inequality
constraintslB. Reduced geometric programming also gives rise to a straight-
forward objective function which has first and second derivatives explicitly
available in terms of the variables T, i=1l,,.m=- 1, However, it should be
noted that the mixed linear/monlinear form for the objective 1n [V(r)] gives a
Hessian matrix of rank n , the number of structural elements. A direct impli-

cation is that the number of constraints must be less than or equal to the number

of structural elements plus one, if a non-singular Hessian EgiL%éﬁl
i, j=1l...m=-1 is to exist. 1

These arguments make a strong case for the application of a solution pro-
cedure based upon the projected gradient philosophy with a second order Newton
ascent method, This procedure has been previously employed by Morris13 and is
described in more detail by Dinkel et aZ.17. These earlier papers are concerned
with the most general form of geometric programming without any linear component
within the objective function. In the case of reduced geometric programming
provision must be made to ensure that the Hessian required by the Newton step
remains non-singular. Several possibilities exist for achieving this end,
including the iterative creation of an inverse Hessian. A more satisfactory
procedure applies an active set strategy which reduces the number of constraints
in each sub-problem to n . This has the added advantage of reducing the number
of dual variables and, thus, the number of iterations required to solve each
sub-problem. Having established the dual sub-problem the solution procedure
comprises two stages: an ascent or Newton maximisation step, followed by a
restoration step. The purpose of the restoration manoceuvre is to ensure that
each iteration concludes with values of the dual variables which satisfy the

reduced dual constraints.
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The method is illustrated first by two small examples traditionally used
to demonstrate strﬁctural optimisation algorithms, and subsequently, by a
previously reported stressed constrained problemlg. The simple examples are
shown in Fig.4 and consists of a three-bar truss under multiple loads and a
ten-bar cantilever subject to a single load. In both of these examples the

following data apply:

modulus of elasticity 6.89 x 107kN/m2 ,
displacement limits 50,8 x 10—3m vertical, 10,16 x 10-2m horizontal,

gauge limits 2,54 x 10-3m ’

with the applied loads P (Fig.4) prescribed as 444.8kN. In both cases we are
seeking a minimum weight design subject to displacement and gauge constraints.
The iteration history obtained by using reduced geometric programming with
Newton/projected-gradient solution technique is shown in Fig.5 where, actual
structural weight to minimum weight, W/W* is plotted against the number of
sub-problems solved which are termed iterations. The application of reduced
geometric programming can give infeasible designs and a form of scaling is
employed in the present technique to control the convergence, The results
obtained by the complete method indicate the power and potential of this combina-

tion of techniques.

The third problem is concerned with the minimum weight design of a wing
box type of structure subject to stress constraints. The structural model
utilises 195 membrane panel and bar elements and requires 105 design variables
relating to spar and panel thickness. Design details for the structure together
with the results of using reduced geometric programming are shown in Fig.6 where
a comparison with a fully-stressing algorithm is shown. In this instance the
availability of the dual function is exploited to obtain bounds. Achieving such
bounds requires a slightly different solution procedure from that described
above and details may be found in Kelly et aZ.19 and Kellyzo. However, the
correspondence between this modified technique and the optimality-criteria

approach is preserved as noted by Bartholomew and MorriSZI.

CONCLUSIONS

Geometric programming was conceived as a special method for solving a
limited range of problems. Nevertheless, a decade of development has led to a
technique which can solve a wide spectrum of problems and has given rise to a
very effective procedure for structural optimisation. It has been shown that
during this development the adoption of a flexible policy has created a variety

of methods each suited to a particular structural applicationm.
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The final outcome of this development process was the generation of
reduced geometric programming with a capacity for solving large aeronautical type
structures. We have shown how this technique is equivalent to the optimality-
criterion methods which can thereby be blended with the better aspects of
mathematical programming. The resulting computer program is shown, in section 4,
to exhibit both the rapid convergence properties of the optimality-criterion

method and a basic numerical stability,

Despite the effectiveness of geometric programming it would be incorrect
to assume that it should be utilised to solve all classes of structural optimisa-
tion problem. All optimisation methods are problem dependent to some degree and
the selection of a particular technique is directly related to the mathematical
structure encountered. The design of a complex structure may, therefore, require
exploiting a group of optimisation methods and from the work presented here we

conclude that geometric programming will have a place within this group.
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Fig.1 Integral reinforced flat panel
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